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Abstract. Billiard dynamics has been widely studied in the literature due to its
applications to model real processes. Regular behaviors (as occurs in rectangular
and elliptic billiards) and disordered or chaotic behaviors (as occurs in the
cases of Sinai and Bunimovich billiards, to mention just a few), have been
analyzed in the literature from different approaches. In this paper we analyze
the propagation of a light ray in a Sinai billiard-shaped cavity using an entropic
approach that consists of calculating the image entropy in the phase space of
the trajectories followed by the light ray in the billiard. The entropic difference
between quasi-periodic and chaotic trajectories is studied. A one-dimensional
Lorentz map is also constructed based on the distances between the initial point
and the subsequent collision points at the boundaries of the billiard. The results
obtained allow differentiating quasi-regular and chaotic states according to their
entropic characteristics and their Lorentz maps.
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1 Introduction

Dynamics is the science that studies the variation in time of different magnitudes, i.e.
their motion. There are basically three types of movements: stationary and equilibrium
movements; periodic and quasi-periodic movements; and chaotic movements, the latter
being those in which the prediction of the movement in a sufficiently long time is
almost impossible. The word chaos and the adjective chaotic are used to describe a
system that apparently has an irregular behavior and is sensitive to small changes in its
initial conditions.

A clear example of this is the so-called butterfly effect, which is perhaps the most
publicized analogy to imply that in chaotic dynamical systems small variations in the
initial conditions can lead to unexpected results [1]. Many interesting examples of
dynamical systems of problems in classical mechanics, quantum mechanics, statistics,
acoustics and optics (especially those in which the interaction between particles
involves elastic collisions) can be reduced to billiard systems [2].
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Fig. 1. The Sinai billiard consists of a square and a circular inclusion at its center. The particle
moves classically experiencing only elastic collisions with the walls.

To speak of billiard systems will mean to speak of point particles moving over some
region (the “billiard table”) that may or may not contain smooth convex obstacles and
undergoing elastic collisions against them.

2 Theory

A dynamical system representing the motion of a free particle within a bounded region
of space, with elastic reflections at the boundaries, is known as a billiard [2]. The
dynamical properties of billiards are determined by the shape of the boundary and can
vary from totally regular to totally disordered or chaotic behaviors, similar in many
respects to that of randomly evolving systems [3]. In this paper we study, in the light of
classical mechanics, the Sinai billiard which is a relatively simple system presenting a
strongly chaotic behavior [3].
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Table 1. Table of geometries for trajectory analysis.

Gn S0 θ0 Ei(TN) Ei(TC)

G1 (−0, 5, 0.374) arctan(1) 1.47511 5.17524
G2 (−0, 5, 0) arctan(3.5) 4.06182 5.0533
G3 (−0, 5, 0) arctan(13.5) 5.78356 5.0464
G4 (−0, 5, 0) arctan(32) 5.02251 5.13676

G5 (−0, 5, 0) arctan(
√
2/2) 5.03952 4.98736

G6 (−0, 5, 0) arctan(
√
7/2) 2.00555 5.1196

Fig. 2. Image entropy (Ei) for TN y TC.

The system consists of a particle moving in the plane inside a square (side L), at the
center of which is placed a circular inclusion (radius R), as shown in Fig. 1. The particle
(mass m) is assumed to obey the laws of classical mechanics and only undergoes elastic
collisions against the walls of the square and the perimeter of the circular obstacle. That
is, between collisions the particle moves freely following a rectilinear trajectory.

The collisions of the particle against the billiard walls are numbered consecutively
by means of the index n which takes integer values, n = 0, 1, 2, 3, · · · . At each collision
(say, the nth) two variables are specified, namely: the position of the point where the
collision occurs (variable Sn) and the angle that the direction of the movement forms
with the wall immediately after the collision (angle θn).

We identify the position S with the parameterized distance along the perimeter
measured from the lower right corner of the square. At the initial time the particle is
in the state (S0, θ0), i.e., the particle undergoes a collision with the left wall at point
S0 and emerges from the collision forming an angle θ0, as shown in Fig. 1. Knowing
(S0, θ0) we want to predict the state (S1, θ1) corresponding to the next collision of
the particle against a wall of the square or possibly against the circular object, whose
existence depends on the values (S0, θ0) and the radius R of the disk.
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Fig. 3. Trajectories without inclusion (NT) and with inclusion (CT), for the cases G1, G3 and G6

of Table 1.

Fig. 4. Series for the trajectories without inclusion (TN) and with inclusion (TC), for the cases
G1, G3 and G6 of Table 1.

Once (S1, θ1) is determined, one follows with the prediction of the state (S2, θ2)
and so on [4]. In the present work the point (S0, θ0) identifies the point of emission of
the light ray inside the cavity. In this work, the program developed by Lansel and Porter
[5] to simulate the dynamics of classical billards was used.

Given the position and direction of the previous collision, the program calculates
the position and direction of the point particle after its subsequent collision with the
billiard boundary. To find the location of the next collision, the program looks for an
intersection between the line describing the path of the point particle and each of the
collisions against the billiard walls.

Given all these intersections, the point with the minimum distance traveled is the
next intersection point. To find the direction in which the point particle travels after the
collision, the angle at the normal to the boundary is calculated from the derivative of
the parametric equations of the billiard at the intersection point. This process leads to
the mapping [4]:

θn = 2arctan

(
dy

dt

/
dx

dt

)∣∣∣∣∣
tn

− θn−1, (1)

ϕn = arctan

(
dy

dt

/
dx

dt

)∣∣∣∣∣
tn

− θn−1 +
π

2
, (2)

where θn represents the angle with respect to the horizontal of the nth iteration, ϕn

represents the incident angle of the nth iteration, y(t) and x(t) are the parametric
equations of the billiard boundary, and tn is the value of t that gives the location of the
nth intersection with the boundary. The entropy is a statistical measure of randomness
that can be used to characterize the texture of the input image.
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Fig. 5. Comparative plots of the Lorentz maps for G1, G2 and G3. The red and blue points
correspond to the maps for the cases TN and TC, respectively.

We use the Mathematica program to calculate the image entropy Ei, defined by:

Ei = −
N∑

k=1

pk log2 (pk) , (3)

where N is the total number of pixels of the image and pk is the probability value
associated with the grayscale level of the kth pixel. The distances between the emission
point S0 and the collision points Sn (n = 1, 2, 3, ...) are the parameters that define a
series as a function of the collision number as follows:

Rn = S0 Sn. (4)

Lorentz maps are constructed for the Rn series of Eq. (3).

3 Results

Table 1 shows the analyzed trajectories Gn, where 2000 iterations were taken in each
case. The characteristics of the light rays, initial position S0 and initial angle θ0, as well
as the image entropies Ei, both for the trajectories with absence (TN) and presence
(TC) of circular inclusion, are shown in the table. Figure 2 shows the entropic behavior.
In Fig. 3 the TN and TC trajectories for a circular inclusion of R = 0.2 are shown, for
some of the cases in Table 1 (G1, G3 and G6). Figure 4 presents the series associated
with the distances between the light ray emission point and the collision points as a
function of the collision number. Figure 5 shows the Lorentz maps for the TN and TC
trajectories, for some of the cases presented in Table 1.

4 Conclusions

The dynamics of the propagation of a light ray in a Sinai billiard-shaped cavity for the
TN and TC trajectories was studied. The calculation of the image entropies Ei and the
construction of Lorentz maps allowed us to identify characteristics of the dynamics for
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the TN and TC trajectories. In particular, the Lorentz maps graphically showed regions
where the quasi-regular and chaotic nature of the TN and TC trajectories can be easily
recognized. The results of this work can be applied in the design and construction of
two-dimensional light traps.
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